39 research outputs found

    Bayesian Reconstruction of Approximately Periodic Potentials at Finite Temperature

    Get PDF
    The paper discusses the reconstruction of potentials for quantum systems at finite temperatures from observational data. A nonparametric approach is developed, based on the framework of Bayesian statistics, to solve such inverse problems. Besides the specific model of quantum statistics giving the probability of observational data, a Bayesian approach is essentially based on "a priori" information available for the potential. Different possibilities to implement "a priori" information are discussed in detail, including hyperparameters, hyperfields, and non--Gaussian auxiliary fields. Special emphasis is put on the reconstruction of potentials with approximate periodicity. The feasibility of the approach is demonstrated for a numerical model.Comment: 18 pages, 17 figures, LaTe

    Mean Field Methods for Atomic and Nuclear Reactions: The Link between Time--Dependent and Time--Independent Approaches

    Get PDF
    Three variants of mean field methods for atomic and nuclear reactions are compared with respect to both conception and applicability: The time--dependent Hartree--Fock method solves the equation of motion for a Hermitian density operator as initial value problem, with the colliding fragments in a continuum state of relative motion. With no specification of the final state, the method is restricted to inclusive reactions. The time--dependent mean field method, as developed by Kerman, Levit and Negele as well as by Reinhardt, calculates the density for specific transitions and thus applies to exclusive reactions. It uses the Hubbard--Stratonovich transformation to express the full time--development operator with two--body interactions as functional integral over one--body densities. In stationary phase approximation and with Slater determinants as initial and final states, it defines non--Hermitian, time--dependent mean field equations to be solved self--consistently as boundary value problem in time. The time--independent mean field method of Giraud and Nagarajan is based on a Schwinger--type variational principle for the resolvent. It leads to a set of inhomogeneous, non--Hermitian equations of Hartree--Fock type to be solved for given total energy. All information about initial and final channels is contained in the inhomogeneities, hence the method is designed for exclusive reactions. A direct link is established between the time--dependent and time--independent versions. Their relation is non--trivial due to the non--linear nature of mean field methods.Comment: 21 pages, to be published in European Physical Journal

    Coordinates, modes and maps for the density functional

    Full text link
    Special bases of orthogonal polynomials are defined, that are suited to expansions of density and potential perturbations under strict particle number conservation. Particle-hole expansions of the density response to an arbitrary perturbation by an external field can be inverted to generate a mapping between density and potential. Information is obtained for derivatives of the Hohenberg-Kohn functional in density space. A truncation of such an information in subspaces spanned by a few modes is possible. Numerical examples illustrate these algorithms.Comment: 15 pages, 9 figure

    Continuum Singularities of a Mean Field Theory of Collisions

    Full text link
    Consider a complex energy zz for a NN-particle Hamiltonian HH and let χ\chi be any wave packet accounting for any channel flux. The time independent mean field (TIMF) approximation of the inhomogeneous, linear equation (z−H)∣Ψ>=∣χ>(z-H)|\Psi>=|\chi> consists in replacing Ψ\Psi by a product or Slater determinant ϕ\phi of single particle states ϕi.\phi_i. This results, under the Schwinger variational principle, into self consistent TIMF equations (ηi−hi)∣ϕi>=∣χi>(\eta_i-h_i)|\phi_i>=|\chi_i> in single particle space. The method is a generalization of the Hartree-Fock (HF) replacement of the NN-body homogeneous linear equation (E−H)∣Ψ>=0(E-H)|\Psi>=0 by single particle HF diagonalizations (ei−hi)∣ϕi>=0.(e_i-h_i)|\phi_i>=0. We show how, despite strong nonlinearities in this mean field method, threshold singularities of the {\it inhomogeneous} TIMF equations are linked to solutions of the {\it homogeneous} HF equations.Comment: 21 pages, 14 figure

    A Bayesian Approach to Inverse Quantum Statistics

    Full text link
    A nonparametric Bayesian approach is developed to determine quantum potentials from empirical data for quantum systems at finite temperature. The approach combines the likelihood model of quantum mechanics with a priori information over potentials implemented in form of stochastic processes. Its specific advantages are the possibilities to deal with heterogeneous data and to express a priori information explicitly, i.e., directly in terms of the potential of interest. A numerical solution in maximum a posteriori approximation was feasible for one--dimensional problems. Using correct a priori information turned out to be essential.Comment: 4 pages, 6 figures, revte

    Antisymmetrization of a Mean Field Calculation of the T-Matrix

    Full text link
    The usual definition of the prior(post) interaction V(V′)V(V^\prime ) between projectile and target (resp. ejectile and residual target) being contradictory with full antisymmetrization between nucleons, an explicit antisymmetrization projector A{\cal A} must be included in the definition of the transition operator, T≡V′A+V′AGV. T\equiv V^\prime{\cal A}+V^\prime{\cal A}GV. We derive the suitably antisymmetrized mean field equations leading to a non perturbative estimate of TT. The theory is illustrated by a calculation of forward α\alpha-α\alpha scattering, making use of self consistent symmetries.Comment: 30 pages, no figures, plain TeX, SPHT/93/14
    corecore